Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 30(3): 538-547, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30414067

RESUMO

Free radical-initiated peptide sequencing mass spectrometry (FRIPS MS) was employed to analyze a number of representative singly or doubly protonated phosphopeptides (phosphoserine and phosphotyrosine peptides) in positive ion mode. In contrast to collision-activated dissociation (CAD) results, a loss of a phosphate group occurred to a limited degree for both phosphoserine and phosphotyrosine peptides, and thus, localization of a phosphorylated site was readily achieved. Considering that FRIPS MS supplies a substantial amount of collisional energy to peptides, this result was quite unexpected because a labile phosphate group was conserved. Analysis of the resulting peptide fragments revealed the extensive production of a-, c-, x-, and z-type fragments (with some minor b- and y-type fragments), suggesting that radical-driven peptide fragmentation was the primary mechanism involved in the FRIPS MS of phosphopeptides. Results of this study clearly indicate that FRIPS MS is a promising tool for the characterization of post-translational modifications such as phosphorylation. Graphical Abstract.


Assuntos
Radicais Livres/química , Espectrometria de Massas/métodos , Fosfopeptídeos/análise , Fosfopeptídeos/metabolismo , Óxidos N-Cíclicos/química , Fragmentos de Peptídeos/análise , Fosfopeptídeos/química , Fosfosserina/análise , Fosfotirosina/análise , Processamento de Proteína Pós-Traducional , Prótons
2.
J Mass Spectrom ; 50(2): 378-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25800020

RESUMO

We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing.


Assuntos
Bromo/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos , Bromo/análise , Bromo/metabolismo , Radicais Livres/química , Fragmentos de Peptídeos/metabolismo , Tripsina
3.
Anal Chem ; 85(15): 7044-51, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23802150

RESUMO

Peptide dissociation behavior in TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-based FRIPS (free radical initiated peptide sequencing) mass spectrometry was analyzed in both positive- and negative-ion modes for a number of peptides including angiotensin II, kinetensin, glycoprotein IIb fragment (296-306), des-Pro(2)-bradykinin, and ubiquitin tryptic fragment (43-48). In the positive mode, the ·Bz-C(O)-peptide radical species was produced exclusively at the initial collisional activation of o-TEMPO-Bz-C(O)-peptides, and two consecutive applications of collisional activation were needed to observe peptide backbone fragments. In contrast, in the negative-ion mode, a single application of collisional activation to o-TEMPO-Bz-C(O)-peptides produced extensive peptide backbone fragmentations as well as ·Bz-C(O)-peptide radical species. This result indicates that the duty cycle in the TEMPO-based FRIPS mass spectrometry can be reduced by one-half in the negative-ion mode. In addition, the fragment ions observed in the negative-ion experiments were mainly of the a-, c-, x-, and z-types, indicating that radical-driven tandem mass spectrometry was mainly responsible for the TEMPO-based FRIPS even with a single application of collisional activation. Furthermore, the survival fraction analysis of o-TEMPO-Bz-C(O)-peptides was made as a function of the applied normalized collision energy (NCE). This helped us to better understand the differences in FRIPS behavior between the positive- and negative-ion modes in terms of dissociation energetics. The duty-cycle improvement made in the present study provides a cornerstone for future research aiming to achieve a single-step FRIPS in the positive-ion mode.


Assuntos
Peptídeos/química , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Óxidos N-Cíclicos/química , Radicais Livres/química , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...